Integral domains in which any two v-coprime elements are comaximal
نویسندگان
چکیده
منابع مشابه
Which elements of a finite group are non-vanishing?
Let $G$ be a finite group. An element $gin G$ is called non-vanishing, if for every irreducible complex character $chi$ of $G$, $chi(g)neq 0$. The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$, is an undirected graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G, tin T}$. Let ${rm nv}(G)$ be the set of all non-vanishi...
متن کاملWhich Cayley Graphs are Integral?
Let G be a non-trivial group, S ⊆ G \ {1} and S = S−1 := {s−1 | s ∈ S}. The Cayley graph of G denoted by Γ(S : G) is a graph with vertex set G and two vertices a and b are adjacent if ab−1 ∈ S. A graph is called integral, if its adjacency eigenvalues are integers. In this paper we determine all connected cubic integral Cayley graphs. We also introduce some infinite families of connected integra...
متن کاملRings in which elements are the sum of an idempotent and a regular element
Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...
متن کاملAssessing diagnosis in heart failure: which features are any use?
We assessed the value of symptoms, past history, medications and signs in the evaluation of patients who might have heart failure secondary to left ventricular systolic dysfunction. An open-access echocardiography service was set up to help identify patients with left ventricular systolic dysfunction who might benefit from treatment with an angiotensin-converting-enzyme inhibitor. History and e...
متن کاملIntegral Domains Having Nonzero Elements with Infinitely Many Prime Divisors
In a factorial domain every nonzero element has only finitely many prime divisors. We study integral domains having nonzero elements with infinitely many prime divisors. Let D be an integral domain. It is well known that if D is a UFD then every nonzero element has only finitely many prime divisors (see e.g. [G]). This is also true if D is a Noetherian domain, or more generally, if D satisfies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2015
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2014.10.006